Scientific highlights illustrated by key publications
- Spin-orbitronics at a topological insulator-semiconductor interface (July 02nd, 2020)
Topological insulators (TI) represent a new class of insulating materials hosting metallic surface states. Moreover, those surface states exhibit a Dirac cone energy dispersion where the strong spin-orbit coupling leads to a helical spin texture ... - Review — Cancer treatment by magneto-mechanical effect of particles (June 30th, 2020)
Cécile Naud, Caroline Thébault, Marie Carrière, Yanxia Hou, Robert Morel, François Berger, Bernard Dieny, Hélène Joisten, Nanoscale Advances, RSC (2020). Cancer treatment by magneto-mechanical effect of particles (TMMEP) is a growing field of research. The principle ... - Coherent long-range coupling between spins by chiral phonons (May 04th, 2020)
We present experimental evidence for coherent long-distance transport of angular momentum inside a non-magnetic dielectric via the coupling to circularly polarized sound waves that exceeds previous benchmarks set by magnon diffusion by orders of magnitude. The ... - All-optical switching of magnetization in Tb/Co-multilayer based electrodes (April 30th, 2020)
This work reports the development of perpendicular magnetic tunnel junctions incorporating a stack of Tb/Co nanolayers whose magnetization can be all-optically controlled via helicity-independent single-shot switching. Toggling of the magnetization of the Tb/Co electrode was ... - Non-volatile electric control of spin–charge conversion in a SrTiO3 Rashba system (April 22nd, 2020)
Electron spin—a fundamentally quantum property—is central to spintronics, a technology that revolutionized data storage, and that could play a major role in creating new computer processors. In order to generate and detect spin currents, spintronics ... - Review on spintronics: Principles and device applications (April 01st, 2020)
Atsufumi Hirohata, Keisuke Yamada, Yoshinobu Nakatani, Ioan-Lucian Prejbeanu, Bernard Diény, Philipp Pirro, Burkard Hillebrands Spintronics is one of the emerging fields for the next-generation nanoelectronic devices to reduce their power consumption and to increase their memory ... - Reducing the impact of operating temperature in magnetic memory thanks to perpendicular shape anisotropy (April 01st, 2020)
MRAM is a type of nonvolatile memory that stores the binary information through the magnetic configuration of its main building block: the Magnetic Tunnel Junction (MTJ). In the last decade, the use of perpendicular anisotropy ... - Spin accumulation dynamics in spintronic devices in the terahertz regime (March 26th, 2020)
Spin accumulation phenomena frequently occur in spintronic devices due to the difference of electrical resistivities of spin-up and spin-down electrons in magnetic materials. They are balanced by spin relaxation phenomena. These phenomena take place in ... - Detection of Heating and Photocurrent attacks using Hybrid CMOS/STT-MRAM (March 26th, 2020)
Integrated Circuits (ICs) have to be protected against threatening environmental radiations and malicious perturbations. A large panel of countermeasures have been developed to answer the needs of this challenging field. This work proposes an innovative ... - Observation of Large Unidirectional Rashba Magnetoresistance in Ge(111) (March 10th, 2020)
Relating magnetotransport properties to specific spin textures at surfaces or interfaces is an intense field of research nowadays. Here, we investigate the variation of the electrical resistance of Ge(111) under the application of an external ... - Experimental evidence of the valley Nernst effect in WSe2 (March 06th, 2020)
The Hall effect can be extended by inducing a temperature gradient in lieu of electric field that is known as the Nernst effect. After the discovery of the spin Nernst effect, the collection would not ... - Multiferroic Proximity Effect in Graphene (March 03rd, 2020)
A possibility of controlling electronic and magnetic properties of graphene via proximity of multiferroic substrate is demonstrated. Coupling graphene to a multiferroic oxide (bismuth ferrite) give rise to novel class of spin-dependent transport phenomena based ... - Self-induced spin-charge conversion in ferromagnetic thin films (February 28th, 2020)
The generation of a spin current and its further conversion to a charge current have attracted considerable attention, facilitating advances in basic physics along with the emergence of closely related applications in the field of ... - Large Current-Driven Domain Wall Mobility by pure spin transfer torque in Ferrimagnetic Mn4N Thin Films (December 11th, 2019)
We found that Mn4N, a rare-earth free ferrimagnet made of abundant elements, is an exciting candidate for the development of sustainable spintronics devices. This material possess exciting properties, and in particular domain walls can be ... - Topology and Œrsted field prevent Walker breakdown in cylindrical nanowires (December 06th, 2019)
Domain-wall motion in one-dimensional conduits is both a textbook case for magnetization dynamics and the understanding of spin torques, and of practical importance for the design of novel spintronic ICT devices. However, instabilities known as ...