Overview
The Magnetic Random Access Memories (MRAM) group develops advanced concepts in this emerging technology. The goal is to realize cells with improved thermal stability, lower power consumption and/or faster switching. Our research covers material stack deposition, nano-fabrication and electrical test evaluation, for applications as standalone memory and non-volatile logic and more recently in neuromorphic computing architectures.
Research directions
Perpendicular Anisotropy Materials
High energy barriers for spin transfer torque (STT) MRAM cells can be achieved with perpendicular anisotropy magnetic tunnel junctions. Solutions for high density MRAM cells to diameters below 20nm require continuous improvements in perpendicular surface anisotropy, while maintaining high TMR properties.
Perpendicular STT MRAM
Evaluation of MRAM concepts requires simulation of expected reversal mechanisms and electrical characterization of individual cells. We aim at understanding dynamics of magnetization reversal and the expected impact of stack modifications to explore application specific optimizations.
Nanofabrication Challenges
Innovation on dense MRAM using pre-patterned substrates, CMOS integration of multifunctional cells and sub-10nm lateral sizes. Tunnel junction nanofabrication in our platform is essential to evaluate MRAM concepts and performance.
Perpendicular Shape Anisotropy
A solution for sub-10nm cell sizes uses high aspect ratios to generate perpendicular shape anisotropy providing scalable retention at the smallest cell sizes. Spin transfer torque switching is possible in these cells, where the reversal dynamics is now under study.
The team
Former members
Post-docs
- Andrey TIMOPHEEV (2014-2017)
- Van Dai NGUYEN (2016-2018)
- J. Ranier Roiz (2015-2016)
- Nikita Strelkov (2016-2019)
PhD
- Luc TILLIE (2015-2018)
- Nicolas PERRISSIN (2015-2018)
- Jyotirmoy CHATTERGEE (2014-2017)
- Hieu Tan NGUYEN (2013-2016)
- Antoine Chavent (2013-2015)
Process Engineers
- Jude GUELFFUCCI (2015-2017)
- Nathalie LAMARD (2016-2017)
- Guillaume LAVAITTE (2015-2016)
Projects
- Samsung SGMI (2014-2017)
- ANR Excalyb (2014-2017)
- Heumem (2015-2018)
- EU-FET Spice (2016-2019)
- EU Great (2016-2019)
- ERC Magical (2015-2020)
Partners
- CEA LETI, Grenoble, France
- Institut NEEL, Grenoble, France
- Crocus Technology, Grenoble, France
- Samsung, San Jose, USA
- Singulus AG, Kahl am Main, Germany
- Aarhus University, Aarhus, Denmark
- Radboud Universiteit, Neijmegen, Netherlands
Recent news
- SPINTRONIC DEVICES FOR MEMORY AND LOGIC APPLICATIONS (July 02nd, 2015)
Spinelectronics is a very rapidly expanding area of R&D which merges magnetism and electronics (Nobel Prize 2007). Since the discovery of giant magneto-resistance (GMR) in 1988, several breakthroughs have further boosted this field [spin-valves 1990, ... - FINITE ELEMENT MODELING OF CHARGE- AND SPIN-CURRENTS IN MAGNETORESISTIVE PILLARS WITH CURRENT CROWDING EFFECTS (July 02nd, 2015)
Charge- and spin-diffusion equations, taking into account spin-diffusion and spin-transfer torque, were numerically solved using a finite element method in complex noncollinear geometry. As an illustration, this approach was used to study the spin-dependent transport ... - EXTENDED SCALABILITY AND FUNCTIONALITIES OF MRAM BASED ON THERMALLY ASSISTED WRITING (July 02nd, 2015)
A recent report from ITRS ERD/ERM working group has identified STT MRAM and RedoxRAM as the most promising candidates for emerging scalable and manufacturable non-volatile memories1. This paper is focused on MRAM. It explains how ... - THERMALLY ASSISTED MRAMS: ULTIMATE SCALABILITY AND LOGIC FUNCTIONALITIES (July 02nd, 2015)
This paper is focused on thermally assisted magnetic random access memories (TA-MRAMs). It explains how the heating produced by Joule dissipation around the tunnel barrier of magnetic tunnel junctions (MTJs) can be used advantageously to assist ... - MRAM WITH SOFT REFERENCE LAYER: IN-STACK COMBINATION OF MEMORY AND LOGIC FUNCTIONS (July 02nd, 2015)
Q. Stainer, L. Lombard, K. Mackay, R. C. Sousa, I. L. Prejbeanu, B. Dieny This paper describes an original concept of thermally assisted MRAM in which memory and logic functions are combined in the same stack. ...