Overview
The Magnetic Random Access Memories (MRAM) group develops advanced concepts in this emerging technology. The goal is to realize cells with improved thermal stability, lower power consumption and/or faster switching. Our research covers material stack deposition, nano-fabrication and electrical test evaluation, for applications as standalone memory and non-volatile logic and more recently in neuromorphic computing architectures.
Research directions
Perpendicular Anisotropy Materials
High energy barriers for spin transfer torque (STT) MRAM cells can be achieved with perpendicular anisotropy magnetic tunnel junctions. Solutions for high density MRAM cells to diameters below 20nm require continuous improvements in perpendicular surface anisotropy, while maintaining high TMR properties.
Perpendicular STT MRAM
Evaluation of MRAM concepts requires simulation of expected reversal mechanisms and electrical characterization of individual cells. We aim at understanding dynamics of magnetization reversal and the expected impact of stack modifications to explore application specific optimizations.
Nanofabrication Challenges
Innovation on dense MRAM using pre-patterned substrates, CMOS integration of multifunctional cells and sub-10nm lateral sizes. Tunnel junction nanofabrication in our platform is essential to evaluate MRAM concepts and performance.
Perpendicular Shape Anisotropy
A solution for sub-10nm cell sizes uses high aspect ratios to generate perpendicular shape anisotropy providing scalable retention at the smallest cell sizes. Spin transfer torque switching is possible in these cells, where the reversal dynamics is now under study.
The team
Former members
Post-docs
- Andrey TIMOPHEEV (2014-2017)
- Van Dai NGUYEN (2016-2018)
- J. Ranier Roiz (2015-2016)
- Nikita Strelkov (2016-2019)
PhD
- Luc TILLIE (2015-2018)
- Nicolas PERRISSIN (2015-2018)
- Jyotirmoy CHATTERGEE (2014-2017)
- Hieu Tan NGUYEN (2013-2016)
- Antoine Chavent (2013-2015)
Process Engineers
- Jude GUELFFUCCI (2015-2017)
- Nathalie LAMARD (2016-2017)
- Guillaume LAVAITTE (2015-2016)
Projects
- Samsung SGMI (2014-2017)
- ANR Excalyb (2014-2017)
- Heumem (2015-2018)
- EU-FET Spice (2016-2019)
- EU Great (2016-2019)
- ERC Magical (2015-2020)
Partners
- CEA LETI, Grenoble, France
- Institut NEEL, Grenoble, France
- Crocus Technology, Grenoble, France
- Samsung, San Jose, USA
- Singulus AG, Kahl am Main, Germany
- Aarhus University, Aarhus, Denmark
- Radboud Universiteit, Neijmegen, Netherlands
Recent news
- Seminar – Computing using magnetic random access memory (CRAM) and spin-orbit torque (SOT) memory cell (September 04th, 2019)
On Wednesday September 25 at 11:00 we have the pleasure to welcome Prof. Jian-Ping WANG (University of Minnesota, MN, USA). He will give us a seminar at CEA/IRIG, Bat 1005, room 445 entitled : Computing using ... - Physicochemical origin of improved MRAM cells with W capping layer (August 20th, 2019)
Increasing the thermal budget beyond 400°C of magnetic random access memory (MRAM) cells is a major goal to allow for seamless conventional electronics integration. At these temperatures significant material diffusion can destroy the interface properties ... - Seminar – Magnetic tunnel junctions using voltage control of the magnetic anisotropy for electric-field-controlled MRAM (July 26th, 2019)
Wednesday August 07 at 11:00 we have the pleasure to welcome Cécile Grezes, Electrical Engineering department, UCLA, Los Angeles. She will give us a seminar at CEA/SPINTEC, Bat 1005, room 434 entitled : Magnetic tunnel junctions ... - Electronics of the future (June 19th, 2019)
The journal of the French Society for electricity, electronics and information technologies (Société de l’électricité, de l’électronique et des technologies de l’information et de la communication) dedicated a special issue to Electronics of the future ... - Seminar – SOT-MRAM: from fundamentals to large scale technology integration (June 14th, 2019)
On Monday July 1 at 14:00 we have the pleasure to welcome Kevin Garello from Imec, Belgium. He will give us a seminar at CEA/IRIG, Bat 1005, room 445 entitled : SOT-MRAM: from fundamentals to large ...