The PTA, Up-line Technological Platform, is a 1000 class clean room resulting from pooling of the technical and human resources of the INAC (ex-DRFMC) and the FMNT (Federation of Micro and Nano Technologies) grouping laboratories from the CNRS, CEA, INP and UJF (LTM, IMEP, SPINTEC, LMGP, systems activities of the G2E-lab). The clean room extends over 350 m² in Building 10.05 and occupies 140 m² in the BCA-INP building (in the CIME clean room, CIME standing for the InterUniversity MicroElectronics and nanotechnologies Centre).
The PTA meets the specific requirements of Grenoble up-line research in terms of technological and technical facilities dedicated to nanosciences in the micro- nanotechnologies field. Its various methods and equipment facilities for lithography, deposition or etching thus enable integration of nano-objects and nano-materials or patterning of thin layers in the nanometric range. The PTA can accommodate all types of substrates from the 5 x 5 mm² sample up to the 4″ wafer as well as all types of materials.
The research fields developed here are numerous: nanoelectronics, MEMS & NEMS, magnetism and spintronics, integration of nano-materials and nano-objects, photonics, … The purpose of the platform is to accompany researchers not only in the technological developments necessary for their research, but also to promote collaboration and partnerships with outside laboratories at national and international level.
Flexibility and ease of access and use are the cornerstone of management of the PTA. This pooling of facilities between the major players of fundamental research in Grenoble means that an original management and administration system had to be set up for the platform run by the INAC and the FMNT. The operating overheads of the PTA are supported by the user laboratories.
The team
Recent news
- Nonlinear properties of pure spin conductors (June 21st, 2018)
N. Thiery, A. Draveny, V. V. Naletov, L. Vila, J. P. Attané, C. Beigné, G. de Loubens, M. Viret, N. Beaulieu, J. Ben Youssef, V. E. Demidov, S. O. Demokritov, A. N. Slavin, V. S. ... - Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect (June 21st, 2018)
T. Brächer, M. Fabre, T. Meyer, T. Fischer, S. Auffret, O. Boulle, U. Ebels, P. Pirro, G. Gaudin, Nano Lett. 17, 7234 (2017) Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse ... - Sub-10nm thermally stable Perpendicular Shape Anisotropy STT-MRAM realized at SPINTEC (March 08th, 2018)
A team at SPINTEC in Grenoble has demonstrated thermally stable and electrically switchable Spin Transfer Torque MRAM (STT-MRAM) of diameter down to 4nm. Among the various technologies of non-volatile memories, STT-MRAM gathers a unique combination ... - Giant magnetoresistance in lateral metallic nanostructures for spintronic applications (January 22nd, 2018)
This study discuss the shift observed in spintronics from the current-perpendicular-to-plane geometry towards lateral geometries, illustrating the new opportunities offered by this configuration. The possibility to combine ultrathin magnetic and non-magnetic layers allowed creating hetero-structures whose ... - Electrical detection of magnetic domain walls by inverse and direct spin Hall effect (August 28th, 2017)
Spin orbit torques allow to move efficiently DW in tracks made of ferromagnetic/spin Hall effect bilayer. Domain wall (DW) detection is then of great importance. In this letter, we demonstrate a detection method, based on ...