Research team Topological spintronics, within the Concepts group
OISO – An ANR project (August 23rd, 2017)
The ANR project OISO (OxIde-based SpinOrbitronics) explores the potential of transition metal oxide (TMO) perovskites for SpinOrbitronics. SpinOrbitronics exploits the spin-orbit coupling (SOC) to obtain spin currents without ferromagnets (FM), more efficient torques to switch magnetization and reduced heat dissipation for low power scalable devices. TMO constitute a material platform of structurally well-matched compounds including […]
Read morePhD defense : Ferromagnetic/nonmagnetic nanostructures for the electrical measurement of the spin Hall effect and the detection of domain walls (April 27th, 2017)
On Friday, the 12th Of May 2017 at 10h00, Van Tuong PHAM from UGA (DRF/INAC/SPINTEC), will defend his PhD thesis entitled “Ferromagnetic/nonmagnetic nanostructures for the electrical measurement of the spin Hall effect and the detection of domain walls” Place : Amphithéâtre du CNRS bâtiment A-3ème étage – 25 rue des Martyrs, Grenoble Spin−orbitronics is based […]
Read moreGiant and tunable spin-charge conversion at oxide interfaces (April 14th, 2017)
At the interface between the strontium titanate and the lanthanide aluminate forms a 2 dimensional electron system. By using a dynamical spin injection technique, we were able to demonstrate a record conversion yield between spin and charge current in this system, moreover that is tunable in amplitude and sign by an electrostatic gate, a premiere. […]
Read moreEvidence for spin-to-charge conversion by Rashba coupling in metallic states at the Fe/Ge(111) interface (January 09th, 2017)
We have demonstrated the spin-to-charge interconversion by Rashba coupling at the interface between two light materials: iron and germanium which is compatible with today’s CMOS technology. This result constitutes the first step towards the fabrication of a spin transistor based on the spin-orbit coupling. The spin-orbit coupling, relating the electron spin and momentum, has long […]
Read moreSpin super-conduction in electric insulators. (September 27th, 2016)
Magnonic is an emerging research field, which aims at exploiting the transport of pure spin current in magnetic materials. The elementary excitations are the propagating spin-waves, also called magnons, which are bosonic quasiparticles. The advantages over conventional electronic devices are a significant reduction in energy consumption thanks to the absence of Joule heating, as well as new features taking […]
Read moreMaster students to visit SPINTEC and discuss our topics for internships (September 18th, 2016)
On 25th October 2016 our host Institut INAC welcomes students for a presentation of internship topics proposed to host Master-2 students during Spring 2017. Details will be provided later.
Read moreComparison of the use of NiFe and CoFe as electrodes for metallic lateral spin valves (May 17th, 2016)
A CoFe based ferromagnetic alloy has been used in lateral spin valves to replace NiFe alloys, which are overwhelmingly exploited as ferromagnets electrodes in lateral spintronic devices. By using this second material, emitted signals are found to be one order of magnitude larger. In addition to using the electric charge of the electron, spintronic technologies […]
Read more