TOPOLOGICAL SPINTRONICS



Research team Topological spintronics, within the Concepts group


We report the observation of spin-to-charge current conversion in strained mercury telluride at room temperature, using spin pumping experiments. We show that a HgCdTe barrier can be used to protect the HgTe from direct contact with the ferromagnet, leading to very high conversion rates. Conventional spintronics is based upon the use of magnetic materials to […]

Read more

Paul Noel was among the 7 laureates of a best poster prize at the Journée de la Matière Condensée, the french conference on condensed matter, held for its 16th edition, at the end of August 2018 in Grenoble. Congratulation to him! The title of his poster was: Highly efficient spin-to-charge current conversion at room temperature in […]

Read more

A new concept of thermally stable and electrically switchable Spin Transfer Torque Magnetic Random Access Memory (STT-MRAM) scalable to diameter down to 4nm was proposed and demonstrated. By dramatically increasing the thickness of the storage layer, a bulk magnetic anisotropy perpendicular to the plane of the layers can be induced which dramatically improves the memory […]

Read more

N. Thiery, A. Draveny, V. V. Naletov, L. Vila, J. P. Attané, C. Beigné, G. de Loubens, M. Viret, N. Beaulieu, J. Ben Youssef, V. E. Demidov, S. O. Demokritov, A. N. Slavin, V. S. Tiberkevich, A. Anane, P. Bortolotti, V. Cros, and O. Klein, Phys. Rev. B 97, 060409 (2018). N. Thiery, V. V. […]

Read more

A team at SPINTEC in Grenoble has demonstrated thermally stable and electrically switchable Spin Transfer Torque MRAM (STT-MRAM) of diameter down to 4nm. Among the various technologies of non-volatile memories, STT-MRAM gathers a unique combination of assets: non-volatility, write speed (3-30ns), density (4Gbit demonstrated by Hynix/Toshiba), low consumption (a few tens of fJ/write), and very […]

Read more

This study discuss the shift observed in spintronics from the current-perpendicular-to-plane geometry towards lateral geometries, illustrating the new opportunities offered by this configuration. The possibility to combine ultrathin magnetic and non-magnetic layers allowed creating hetero-structures whose dimensions are smaller than the characteristic lengths of the spin-dependent transport. This has notably led to the discovery of […]

Read more

On Wednesday, the 15th Of November 2017 at 10h00, Gilles ZAHND from DRF/INAC/SPINTEC, will defend his PhD thesis entitled “Spin accumulation effects and magnetoresistance effects in lateral nanostructures” Place : Amphitheater from CNRS building A-3rd floor – 25 rue des Martyrs, Grenoble Spintronics is mainly based on the phenomenon of spin accumulation, which is inherent […]

Read more

Spin orbit torques allow to move efficiently DW in tracks made of ferromagnetic/spin Hall effect bilayer. Domain wall (DW) detection is then of great importance. In this letter, we demonstrate a detection method, based on the ability for a ferromagnetic nanowire, in which a DW is pinned, to inject or detect a pure spin current. […]

Read more

GeTe has been predicted to be the father compound of a new class of multifunctional materials: ferroelectric Rashba semiconductors. In that sense, they are expected to display a coupling between spin-dependent k-splitting and ferroelectricity, thus allowing an electrical control of spin-to-charge conversion phenomena in spintronics. This paper reported the epitaxial growth of Fe/GeTe(111) heterostructures by […]

Read more

OISO – An ANR project

The ANR project OISO (OxIde-based SpinOrbitronics) explores the potential of transition metal oxide (TMO) perovskites for SpinOrbitronics. SpinOrbitronics exploits the spin-orbit coupling (SOC) to obtain spin currents without ferromagnets (FM), more efficient torques to switch magnetization and reduced heat dissipation for low power scalable devices. TMO constitute a material platform of structurally well-matched compounds including […]

Read more




Copyright © 2015 - Spintec.fr - OXIWIZ - Privacy Policy

Scroll to Top