Research team Theory/Simulation, within the Concepts group
Helium ions put skyrmions on the track (May 20th, 2021)
Magnetic skyrmions are local twists of the magnetization which hold promise as nm scale information carrier. Here we demonstrate that focused He+-ion irradiation can be used to create and guide skyrmions in magnetic tracks. This work opens up a new path to manipulate magnetic skyrmions in magnetic memory and logic devices. Magnetic skyrmions are currently […]
Read moreAtomistic spin simulations have been carried out to study the probability of all-optical switching of [Tb/Co] multilayered thin films. Playing with the composition of the sample, the material parameters and the fluence of the laser pulse we have shown the possibility to get single-shot all-optical switching. Since the first experimental observation of all-optical switching phenomena, […]
Read moreGiant Perpendicular Magnetic Anisotropy Enhancement in MgO-Based Magnetic Tunnel Junction by Using Co/Fe Composite Layer (April 26th, 2021)
Magnetic tunnel junctions with perpendicular anisotropy form the basis of the spin-transfer torque magnetic random-access memory (STT-MRAM), which is nonvolatile, fast, dense, and has quasi-infinite write endurance and low power consumption. Here, an alternative design of tunnel junctions comprising FeCoFe|MgO storage layers with greatly enhanced perpendicular magnetic anisotropy (PMA) is proposed, leveraging the interfacial PMA […]
Read moreTheoretical study of current induced domain wall motion in magnetic nanotubes with azimuthal magnetization (April 12th, 2021)
We report a theoretical overview of the magnetic domain wall behavior under an electric current in infinitely long nanotubes with azimuthal magnetization. We highlight effects that, besides spin-transfer torques already largely understood in flat strips, arise specifically in the tubular geometry: the Œrsted field and curvature-induced magnetic anisotropy resulting both from the exchange interaction and […]
Read moreDefence Thesis – Modeling of domain walls dynamics in circular cross-section nanowires (March 09th, 2021)
On Monday, the 15th Of March 2021 at 13h30, Arnaud De Riz will defence his thesis “Modeling of domain walls dynamics in circular cross-section nanowires” supervised by D. Gusakova and J.-Ch. Toussaint Place: ONLINE Link to participate on-line: https://grenoble-inp.zoom.us/j/93099958160 Code: 075714 Abstract: This thesis studies theoretically the magnetic domain wall behavior in cylindrical wires subjected […]
Read moreSeminar – Spin dynamics and transport at the nanoscale (March 08th, 2021)
On March 17 at 15:00, Manuel dos Santos Dias from Peter Grünberg Institut and Institute for Advance Simulation, Forschungszentrum Jülich, Germany will give us a seminar entitled : Spin dynamics and transport at the nanoscale Place : The seminar will be given via skype (ask link to alain.marty@cea.fr ) abstract : In this talk, I […]
Read moreMeasurement of the Spin Absorption Anisotropy in Lateral Spin Valves (March 04th, 2021)
The spin absorption process in a ferromagnetic material depends on the spin orientation relatively to the magnetization. Using a ferromagnet to absorb the pure spin current created within a lateral spin valve, we evidence and quantify a sizable orientation dependence of the spin absorption in Co, CoFe, and NiFe. These experiments allow us to determine […]
Read moreControlling magnetism with voltage is shown to be more efficient using nitrogen magneto-ionics (February 12th, 2021)
Voltage-driven ionic transport in magnetic materials has traditionally relied on controlled migration of oxygen ions. In this work, led by researchers at UAB (Barcelona) in collaboration with colleagues at Georgetown Univ. (D.C.), IMN-CNM-CSIC (Madrid), Spintec (Grenoble), HZDR (Dresden), ICN2 and IMB-CNM-CSIC (Barcelona), room-temperature voltage-driven nitrogen transport is demonstrated using electrolyte-gating of a CoN film. The […]
Read more[Filled] Professorship position – Theory and simulation of spintronics (February 09th, 2021)
SPINTEC is opening a Professorship position, with competition to take place during Spring 2021. The research scope is theory and numerical simulation, covering all aspects from fundamental to applied spintronics in the broadest sense. The research focus is the modeling of specific properties induced by spin-orbit effects, with the aim on the one hand to […]
Read moreUFO – An ANR project (February 02nd, 2021)
UFO stands for UltraFast Opto-magneto-spintronics for Futur Nanotechnologies. UltraFast Opto-magneto-spintronics is an emerging field of research that combines the ideas and concepts of magneto-optics and opto-magnetism with spin transport phenomena, supplemented with the possibilities offered by photonics for ultrafast low-dissipative manipulation and transport of information. Both light and spin currents can control magnetic order, though […]
Read more