Research team Theory/Simulation, within the Concepts group
Review – The Magnetic Genome of Two-Dimensional van der Waals Materials (June 13th, 2022)
Q. H. Wang, A. Bedoya-Pinto, M. Blei, A. H. Dismukes, A. Hamo, S. Jenkins, M. Koperski, Y. Liu, Q.-Ch. Sun, E. J. Telford, H. H. Kim, M. Augustin, U. Vool, J.-X. Yin, L. H. Li, A. Falin, C. R. Dean, F. Casanova, R. F. L. Evans, M. Chshiev, A. Mishchenko, C. Petrovic, R. He, L. […]
Read moreVan der Waals (vdW) layered magnets are promising materials to develop ultracompact and multifunctional spintronics devices. However, most of them are magnetic only at low temperature and are almost exclusively studied in the form of small flakes obtained by mechanical exfoliation. Here, we demonstrate the direct growth by molecular beam epitaxy of Fe5GeTe2, a room […]
Read moreDesigning magnetic memory with improved retention and writability (April 08th, 2022)
Magnetic Random Access Memory recently started to be commercialized by all main microelectronics factories. In MRAM, the information is coded via parallel or antiparallel magnetic configurations to represent ones and zeroes. The technology is intrinsically nonvolatile, meaning it can keep information without being electrically powered. However, nonvolatility often comes with a trade-off between the information […]
Read moreDzyaloshinskii–Moriya Interaction and Skyrmion States at 2D Materials/Co Interfaces (November 25th, 2021)
Significant Dzyaloshinskii–Moriya interaction (DMI) and perpendicular magnetic anisotropy (PMA) at interfaces comprising hexagonal boron nitride (h-BN) and cobalt (Co) remaining stable over a large range of Co film thickness are reported. Furthermore, it is demonstrated that that such significant DMI and PMA give rise to the formation of skyrmions with small applied external fields. Interfacial […]
Read moreA new spintronic memristive component for neuromorphic circuits (November 18th, 2021)
Neuromorphic computing is a bio-inspired technology which aims at mimicking the brain working principles. It can be used for fast and energy-efficient applications through the implementation of networks of artificial neurons and synapses. Artificial synapses are implemented as electronic components called memristors. These are non-volatile memory devices whose resistance can take several intermediate values between […]
Read moreIntroductory Course on Magnetic Random Access Memory (InMRAM 2021) (October 08th, 2021)
This introductory course aims at helping students, researchers and engineers having little or no background in magnetism to better understand the physics and working principles of this new class of magnetic memory called MRAMs (Magnetic Random Access Memory) based on magnetic tunnel junctions. MRAM and particularly the STT-MRAM (Spin-Transfer-Torque RAM) are attracting an increasing interest […]
Read moreMasters thesis projects for Spring 2022 (September 17th, 2021)
You find here the list of proposals for Master-2 internships to take place at Spintec during Spring 2022. In most cases, these internships are intended to be suitable for a longer-term PhD work. Interested Master-1 students are also encouraged to apply, as well as students not phased for a Spring internship, especially those coming from […]
Read moreTime-resolved magnetic imaging of Œrsted-field effects in cylindrical nanowires (August 31st, 2021)
We have conducted time-resolved stroboscopic imaging of the magnetization dynamics in cylindrical nanowires subject to nanosecond pulses of electric current. These confirm the dramatic impact of the Œrsted field in the cylindrical geometry. Through a thorough quantitative analysis, we extract features during the pulse of current, such as the azimuthal component of magnetization in magnetic […]
Read moreRoute towards efficient magnetization reversal driven by voltage control of magnetic anisotropy (July 06th, 2021)
Using a macrospin approach, we carried out a systematic analysis of the role of the voltage controlled magnetic anisotropy on the magnetization dynamics of nanostructures with out-of-plane magnetic anisotropy. Diagrams of the magnetization switching have been computed depending on the material and experiment parameters thus allowing predictive sets of parameters for optimum switching experiments. Voltage […]
Read moreWe report very large spin transfer torque driven domain wall velocities, approaching 3000 m/s, in rare-earth free ferrimagnetic Mn4-xNixN thin films close to the angular momentum compensation point. We also observe a reversal of the domain wall motion direction after the angular momentum compensation point. The interest towards ferrimagnets has recently grown because of their […]
Read more