Research team Theory/Simulation, within the Concepts group
SPINTEC offers a theoretical post-doctoral position in finite element modeling for Spintronics. The objective of our project is to combine key ingredients for modern Spintronics and SpinOrbitronics modeling within the original finite element based multi-physics software. The final goal is to make this software and its documentation accessible to a large community via the dedicated […]
Read moreSub-10nm thermally stable Perpendicular Shape Anisotropy STT-MRAM realized at SPINTEC (March 08th, 2018)
A team at SPINTEC in Grenoble has demonstrated thermally stable and electrically switchable Spin Transfer Torque MRAM (STT-MRAM) of diameter down to 4nm. Among the various technologies of non-volatile memories, STT-MRAM gathers a unique combination of assets: non-volatility, write speed (3-30ns), density (4Gbit demonstrated by Hynix/Toshiba), low consumption (a few tens of fJ/write), and very […]
Read moreProposals for student internships for Spring 2018 (October 03rd, 2017)
You find here the list of proposals for Master-2 internships to take place during Spring 2018. In most cases, these internships are intended to be suitable for a longer-term PhD work. Interested Master-1 students are also encouraged to apply. You may either download the full list of proposals, along with an introduction to the SPINTEC […]
Read moreBook – Introduction to Random-Access Memory (September 01st, 2017)
B. Dieny, R. B. Goldfarb, K.-J. Lee (Eds), IEEE Press, Wiley (2017). With chapter authorship from Spintec: L. Buda-Prejbeanu, L. Prejbeanu, B. Diény. DOI: 10.1002/9781119079415 Magnetic random-access memory (MRAM) is poised to replace traditional computer memory based on complementary metal-oxide semiconductors (CMOS). MRAM will surpass all other types of memory devices in terms of nonvolatility, […]
Read moreMATEMAC3D – An ANR project (August 28th, 2017)
Overview The objective of the project is to combine all key ingredients for modern Spintronics and SpinOrbitronics modeling within a novel and original non-commercial multi-physics software. These key ingredients are the appropriate spin transport equations that are easy-implementable in a numerical solver, the simultaneous resolution of the spin-dependent transport and magnetization dynamics, and finally the […]
Read moreReview – Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications (June 28th, 2017)
B. Dieny and M. Chshiev, Rev. Mod. Phys. 89, 025008 (2017). Spin electronics is a rapidly expanding field stimulated by a strong synergy between breakthrough basic research discoveries and industrial applications in the fields of magnetic recording, magnetic field sensors, nonvolatile memories [magnetic random access memories (MRAM) and especially spin-transfer-torque MRAM (STT-MRAM)]. In addition to […]
Read moreMairbek Chshiev elevated to Senior member of the IEEE (June 27th, 2017)
Prof. M. Chshiev is a theoretical physicist specializing on theory of spintronic phenomena in magnetic nanostructures and electronic structure of materials for spintronics. His background comprises both condensed matter theory and computational material science approaches including ab-initio, tight binding, free electron and diffusive approaches. He is Head of Theory Group at SPINTEC and have been […]
Read moreSeminar : Spintronics with Ferroelectrics (June 21st, 2017)
On June 27 at 11h Prof. Evgeny Tsymbal from University of Nebraska will give a talk entitled “Spintronics with Ferroelectrics” Place : l’amphithéâtre Laurent Puech (2-D-004) in GreEN-ER building “Spintronics with Ferroelectrics” Ferroelectric materials are characterized by a spontaneous electric polarization switchable by an applied electric field. If such a ferroelectric is interfaced with another […]
Read moreTailoring magnetic insulator proximity effects in graphene: first-principles calculations (June 07th, 2017)
Advancing spintronic devices requires using novel 2D materials including graphene with featured properties. In particular, a significant effort has been focused on injecting spins and inducing magnetism in graphene giving rise to emerging field of graphene spintronics. It is demonstrated that robust spin polarization can be induced in graphene via proximity with magnetic insulators including […]
Read moreSeminar: Inducing Magnetism and Spin-Orbit coupling into Graphene (November 25th, 2016)
Dr. David Soriano Catalan Institute of Nanoscience and Nanotechnology (ICN2) Where: room 434 A, Building 10.05, CEA-Grenoble. The possibility to manipulate the magnetism at the atomic scale in 2D materials shown promising for the next generation of data storage devices and for quantum technologies. Hydrogenated graphene has demonstrated to be a good platform for such […]
Read more