Controlling magnetism with voltage is shown to be more efficient using nitrogen magneto-ionics (February 12th, 2021)
Voltage-driven ionic transport in magnetic materials has traditionally relied on controlled migration of oxygen ions. In this work, led by researchers at UAB (Barcelona) in collaboration with colleagues at Georgetown Univ. (D.C.), IMN-CNM-CSIC (Madrid), Spintec (Grenoble), HZDR (Dresden), ICN2 and IMB-CNM-CSIC (Barcelona), room-temperature voltage-driven nitrogen transport is demonstrated using electrolyte-gating of a CoN film. The […]
Read more[Filled] Professorship position – Theory and simulation of spintronics (February 09th, 2021)
SPINTEC is opening a Professorship position, with competition to take place during Spring 2021. The research scope is theory and numerical simulation, covering all aspects from fundamental to applied spintronics in the broadest sense. The research focus is the modeling of specific properties induced by spin-orbit effects, with the aim on the one hand to […]
Read moreSpin-information transported over long-distances at room temperature in the ultra-low damping hematite antiferromagnet (February 09th, 2021)
A consortium led by physicists at JGU Mainz, in collaboration with CNRS/Thales Palaiseau, SPINTEC and LNCMI Grenoble, and NTNU Trondheim, demonstrated that transporting spin-information at room temperature and over long distances is within reach. They established and took advantage of two remarkable features of the insulating hematite antiferromagnet. Firstly, it can carry spin-information via current-induced […]
Read moreUFO – An ANR project (February 02nd, 2021)
UFO stands for UltraFast Opto-magneto-spintronics for Futur Nanotechnologies. UltraFast Opto-magneto-spintronics is an emerging field of research that combines the ideas and concepts of magneto-optics and opto-magnetism with spin transport phenomena, supplemented with the possibilities offered by photonics for ultrafast low-dissipative manipulation and transport of information. Both light and spin currents can control magnetic order, though […]
Read moreCRYMCO – An ANR project (January 28th, 2021)
The goal of project CRYMCO is to optimize MRAM cell concepts for operation in cryogenic temperature environments. The project will explore applications for storage in conventional and quantum information processing. In the first case, MRAM with low energy dissipation for cryogenic environments could result in power savings by operating at low temperature, when the cost/power […]
Read more24 months postdoc position – 2D ferromagnets (January 26th, 2021)
In the frame of the French national ANR project ELMAX, Spintec laboratory is opening a postdoctoral researcher position. The candidate will work on the magnetism of FeGeTe 2D ferromagnets grown by molecular beam epitaxy. The objective will be to tune the magnetic properties of 2D ferromagnets by interfacing with high spin-orbit materials (transition metal dichalcogenides […]
Read moreELMAX – An ANR project (January 25th, 2021)
ELMAX stands for ELectrical Control of Magnetization in fully epitaXial van der Waals heterostructures. It is a 36 months young researcher project funded by the French ANR. The recent discovery of 2D magnets has enabled the investigation of spin devices fully made of van der Waals materials. Thanks to their two-dimensional nature, 2D magnets generally […]
Read moreSpinSpike – An ANR project (January 19th, 2021)
SpinSpike stands for Spintronic Spiking Neurons. It is a 42-month-long ANR project (2021/2024). Spintronics has recently shown its promise for neuromorphic computing, but is lacking an essential ingredient of biological neural networks: spiking neurons. In this context, the objective of SpinSpike project is to explore novel approaches of spiking neurons using magnetic tunnel junctions. Building […]
Read moreCONTRABASS – An ANR project (January 15th, 2021)
CONTRABASS stands for Ferroelectric control of Rashba states, a 42 months ANR project starting in December 2020. Spintronics devices involve ferromagnetic elements with high switching energies. Contrastingly, the polarization of ferroelectrics can be easily switched by an electric field, at energies typically 1000 times lower. Combined with high spin-orbit coupling elements, ferroelectrics have also a […]
Read moreMATHEEIAS – An ANR-DFG bilateral project (January 12th, 2021)
MATHEEIAS stands for MAgneto-THermo-Electric Effects In Antiferromagnetic Spintronics. It is a 48 months collaborative international project co-funded by the French ANR and the German DFG. The project relies on the following consortium: SPINTEC Grenoble, CINAM Marseille, TUD Dresden / Uni. Konstanz, and JGU Mainz, in close collaboration with FZU & Charles Uni. Prague. The aim […]
Read more