Research team MRAM memories, within the Devices group
FINITE ELEMENT MODELING OF CHARGE- AND SPIN-CURRENTS IN MAGNETORESISTIVE PILLARS WITH CURRENT CROWDING EFFECTS (July 02nd, 2015)
Charge- and spin-diffusion equations, taking into account spin-diffusion and spin-transfer torque, were numerically solved using a finite element method in complex noncollinear geometry. As an illustration, this approach was used to study the spin-dependent transport in a two-dimensional model giant magnetoresistance metallic pillar sandwiched between extended electrodes as is the case in magnetoresistive heads for […]
Read moreEXTENDED SCALABILITY AND FUNCTIONALITIES OF MRAM BASED ON THERMALLY ASSISTED WRITING (July 02nd, 2015)
A recent report from ITRS ERD/ERM working group has identified STT MRAM and RedoxRAM as the most promising candidates for emerging scalable and manufacturable non-volatile memories1. This paper is focused on MRAM. It explains how the heating produced by Joule dissipation around the tunnel barrier of magnetic tunnel junctions (MTJ) can be used to assist […]
Read moreTHERMALLY ASSISTED MRAMS: ULTIMATE SCALABILITY AND LOGIC FUNCTIONALITIES (July 02nd, 2015)
This paper is focused on thermally assisted magnetic random access memories (TA-MRAMs). It explains how the heating produced by Joule dissipation around the tunnel barrier of magnetic tunnel junctions (MTJs) can be used advantageously to assist writing in MRAMs. The main idea is to apply a heating pulse to the junction simultaneously with a magnetic […]
Read moreMRAM WITH SOFT REFERENCE LAYER: IN-STACK COMBINATION OF MEMORY AND LOGIC FUNCTIONS (July 02nd, 2015)
Q. Stainer, L. Lombard, K. Mackay, R. C. Sousa, I. L. Prejbeanu, B. Dieny This paper describes an original concept of thermally assisted MRAM in which memory and logic functions are combined in the same stack. The memory cell is represented by a magnetic tunnel junction having an exchange biased storage layer and a soft […]
Read moreR.C. Sousa, S. Bandiera, M. Marins de Castro, B. Lacoste, L. San-Erneterio-Alvarez, L. Nistor, S. Auffret, U. Ebels, C. Ducruet, I. L. Prejbeanu, L. Vila, B. Rodrnacq, B. Dieny This work reports on advances in MRAM cells aiming at sub-nanosecond switching and for sub-20nm technology nodes. Ultrafast precessional spin-transfer switching in elliptical magnetic tunnel junction […]
Read moreWP1 : RELIABILITY AND IMPROVED PERFORMANCES OF SPINTRONIC MATERIALS (July 02nd, 2015)
In WP1, studies were conducted to understand the mechanisms responsible for the dielectric breakdown in magnetic tunnel junctions (MTJs). A key asset of STT-MRAM is their write endurance which is much better than in all other technologies of non-volatile memories (FLASH, 105 cycles; PCRAM, 109 cycles; ReRAM, 1010 10 cycles). Combined with their speed (switching time 1-5ns), and density […]
Read moreUNE COUCHE « TAMPON » QUI CHANGE TOUT ! (July 02nd, 2015)
Une jonction tunnel magnétique exploite des variations de résistance électrique sous l’effet d’un champ magnétique. Des chercheurs de l’Inac ont montré que l’insertion d’une couche « tampon » entre deux structures cristallines différentes peut augmenter de 75% la magnétorésistance d’une jonction à aimantation perpendiculaire, ce qui offre la perspective d’une réduction significative de la consommation […]
Read morePATHOS (July 02nd, 2015)
Perpendicular Anisotropy Materials for High-Density Non-volatile Magnetic Memory Cells Description The project aims at building the knowledge to fabricate perpendicular anisotropy magnetic tunnel junctions, and more generally the realization of perpendicular anisotropy layers for use as magnetic tunnel junction electrodes or perpendicular spin polarisers. The perpendicular anisotropy material development, will allow the demonstration of four […]
Read moreMagnetic Random Access Memories (January 01st, 2011)
B. Dieny, R.C. Sousa, J.P. Nozières, O. Redon, I.L. Prejbeanu, Magnetic Random Access Memories (Ch.28), in Nanoelectronic and Information Technology, R. Waser Ed., Wiley-VCH (2011). ISBN: 978-3-527-40927-3. Spinelectronics is a rapidly expanding area of research and development which merges magnetism and electronics (See Chapter 4 for insights on the related basics). Since the discovery of […]
Read moreChapter — Spin transfer torques in magnetic tunnel junctions (January 01st, 2009)
A. Manchon, N. Ryzhanova, M. Chshiev, A. Vedyaev, K.J. Lee, B. Dieny, Spin transfer torques in magnetic tunnel junctions, 63-106, in Giant Magnetoresistance: New Research, Eds: A. D. Torres and D. A. Perez, Nova Science Publishers, Inc. (2009). ISBN: 978-161324951-2, 978-160456733-5 Abstract This chapter presents a review on spin transfer torque in magnetic tunnel junctions. […]
Read more