Selected publications (2016 onwards)
Computing and storing data at the nanoscale using magnetic skyrmions (December 08th, 2022)
Magnetic skyrmions are appealing for use in logic and memory devices combining small size and fast motion. Here, we propose to exploit skyrmion interactions to perform both logic and memory operations at the nanoscale. Our concept opens a path for novel devices which intrinsically merge high-density non-volatile data storage with computing capabilities. a. Schematic representation […]
Read moreBilinear magnetoresistance in HgTe topological insulator (December 05th, 2022)
Y. Fu, J. Li, J. Papin, P. Noël, S. Teresi, M. Cosset-Chéneau, C. Grezes, T. Guillet, C. Thomas, Y.-M. Niquet, P. Ballet, T. Meunier, J.-P. Attané, A. Fert, and L. Vila, Nano Lett. 22, 7867 (2022). We report the observation of this bilinear magnetoresistance (BMR) in strained HgTe, a prototypical TI. We show that […]
Read moreÉlectronique : un pas vers le contrôle des skyrmions (December 04th, 2022)
Article “Électronique : un pas vers le contrôle des skyrmions” dans une revue de vulgarisation scientifique Pour la science N° 542 paru le 16 novembre 2022. Article “Electronics: a step towards the control of skyrmions” in a popular science journal Pour la science N° 542 published on November 16, 2022. Continuer la lecture ici
Read moreControlling skyrmion chirality with a gate voltage (December 01st, 2022)
Magnetic skyrmions are localized chiral spin textures, which offer great promise to store and process information at the nanoscale. The unique sense of rotation of their surrounding domain wall, called chirality, is resulting from the so-called Dzyaloshinskii−Moriya Interaction. C.E. Fillion et al. have managed the inversion of the skyrmion chirality by applying a gate voltage, […]
Read moreObservation of skyrmions in synthetic antiferromagnetic and their nucleation using current and light (November 28th, 2022)
Skyrmions in synthetic antiferromagnets are appealing for use in future memory and computing devices, combining small size and fast motion, but creating, stabilizing, and observing them remains a challenge. Here, we demonstrate the stabilization and current and light induced nucleation of skyrmions in a synthetic antiferromagnet, observing the magnetization texture in each layer using X-ray […]
Read moreBright and Dark States of Two Distant Macrospins Strongly Coupled by Phonons (November 04th, 2022)
A new form of spintronic is emerging, exploiting electrical insulators. Recent spectroscopic studies performed at SPINTEC have revealed the coherent coupling that may establish between two distant macrospins separated by a non-magnetic dielectric spacer via circularly-polarized acoustic phonons that carry angular momentum information. This long-range effect represents an important progress in magnonics and spin wave […]
Read morePerpendicular-shape-anisotropy MRAM do not fear temperature (September 01st, 2022)
Perpendicular-shape-anisotropy magnetic random-access memory (PSA MRAM) has been proposed to maintain the thermal stability of solid-state magnetic bits down to a few nanometers in diameter. Here we confirm directly with high-spatial resolution and high-sensitivity electron holography that magnetization is weakly affected by temperature, in contrast with the conventional ultrathin MRAM cells. Magnetic random-access memory (MRAM) […]
Read moreUnveiling temperature dependence mechanisms of perpendicular magnetic anisotropy at Fe/MgO interfaces (August 30th, 2022)
A recent breakthrough in understanding the thermal effects on the magnetic properties of perpendicularly magnetized Fe/MgO interfaces is reported. It turns out that the macroscopic mechanisms play a decisive role in determining the thermal stability of magnetization in such structures. The perpendicular magnetic anisotropy (PMA) at magnetic transition metal/oxide interfaces(TM/Ox) is a key element in […]
Read moreReview – Two-dimensional materials prospects for non-volatile spintronic memories (August 17th, 2022)
H. Yang✉, S. O. Valenzuela✉, M. Chshiev, S. Couet, B. Dieny, B. Dlubak, A. Fert, K. Garello, M. Jamet, D.-E. Jeong, K. Lee, T. Lee, M.-B. Martin, G. S. Kar, P. Sénéor, H.-J. Shin, S. Roche✉, Nature 606, 663 (2022). In this Perspective article, an overview of the current developments and challenges in regard […]
Read moreReview – Spin-orbit torque switching of magnetic tunnel junctions for memory applications (August 03rd, 2022)
Viola Krizakova, Manu Perumkunnil, Sebastien Couet, Pietro Gambardella, Kevin Garello, J. Magn. Magn. Mater. (2022). In this Review, the phenomenon of spin-orbit torques (SOT) is reviewed, from the fundamentals to prospects for applications. Spin-orbit torques (SOT) provide a versatile tool to manipulate the magnetization of diverse classes of materials and devices using electric currents, leading […]
Read more