PUBLICATIONS



Selected publications (2016 onwards)


We have fabricated large-scale two-dimensional transition metal dichalcogenide (2D TMD) MoSe2, a promising candidate for electronics, valley-spintronics and optoelectronics, on insulating sapphire and have investigated its structural and transport properties. We have shown that the layered MoSe2 exhibits characteristics of a stoichiometric 2H-phase, a van der Waals epitaxy regarding the substrate and we have evidenced […]

Read more

We have created an analytical model of spin waves in microscopic spin-wave waveguides in the presence of interfacial Dzyaloshinskii-Moriya interaction. By comparing to micromagnetic simulations, we have demonstrated that spatially periodic excitation sources can be used to create a uni-directional spin-wave-emission source whose properties can be predicted by our model. Since miniaturization of CMOS devices […]

Read more

Magnetic field mapping techniques have continuously been developed due to the necessity for determining the spatial components of local magnetic fields in many industrial applications and fundamental research. Several factors are considered for sensors such as spatial resolution, sensitivity, linear response, required proximity to the sample, as well as the ability to filter noise and […]

Read more

We have demonstrated the spin-to-charge interconversion by Rashba coupling at the interface between two light materials: iron and germanium which is compatible with today’s CMOS technology. This result constitutes the first step towards the fabrication of a spin transistor based on the spin-orbit coupling. The spin-orbit coupling, relating the electron spin and momentum, has long […]

Read more

Misalign to write faster

The writing in conventional magnetic memories based on magnetic tunnel junctions (STT-MRAM) is intrinsically stochastic : a large amplitude thermal fluctuation is required to trigger the siwthing of the storage layer magnetization. SPINTEC has shown that this stochasticity can be almost completely suppressed by inducing an oblique anisotropy (easy-cone anisotropy) in the storage layer. This […]

Read more

Special issue on Spintronics, published in the proceedings of the IEEE, vol.104 (10), October 2016 Editors: Hideo Ohno, Mark Stiles, Bernard Dieny

Read more

Magnonic is an emerging research field, which aims at exploiting the transport of pure spin current in magnetic materials. The elementary excitations are the propagating spin-waves, also called magnons, which are bosonic quasiparticles. The advantages over conventional electronic devices are a significant reduction in energy consumption thanks to the absence of Joule heating, as well as new features taking […]

Read more

A CoFe based ferromagnetic alloy has been used in lateral spin valves to replace NiFe alloys, which are overwhelmingly exploited as ferromagnets electrodes in lateral spintronic devices. By using this second material, emitted signals are found to be one order of magnitude larger. In addition to using the electric charge of the electron, spintronic technologies […]

Read more

Bringing a ferromagnetic layer to resonance creates non-equilibrium magnetization dynamics which generates a spin current. The spin current propagates from the ferromagnet into a neighboring layer if permitted by the interface. This is equivalent to saying that the air-flow generated by rotating the blades of a fan can propagate in a neighboring room if the […]

Read more

Ces structures magnétiques nanométriques ont été observées à températures ambiante dans des matériaux compatibles avec l’industrie électronique. Ces résultats font sauter un verrou important quant à l’utilisation des skyrmions comme vecteur d’information à l’échelle nanométrique dans nos ordinateurs.

Read more




Copyright © 2015 - Spintec.fr - OXIWIZ - Privacy Policy

Scroll to Top