Selected publications (2016 onwards)
Review – Antiferromagnetic spintronics (March 12th, 2018)
V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018) Spintronics utilizing antiferromagnetic materials has potential for the next generation of applications and offers opportunities for new ideas. Ultimately, antiferromagnets could replace ferromagnets as the active spin-dependent element on which spintronic devices are based. Central to […]
Read moreSub-10nm thermally stable Perpendicular Shape Anisotropy STT-MRAM realized at SPINTEC (March 08th, 2018)
A team at SPINTEC in Grenoble has demonstrated thermally stable and electrically switchable Spin Transfer Torque MRAM (STT-MRAM) of diameter down to 4nm. Among the various technologies of non-volatile memories, STT-MRAM gathers a unique combination of assets: non-volatility, write speed (3-30ns), density (4Gbit demonstrated by Hynix/Toshiba), low consumption (a few tens of fJ/write), and very […]
Read moreGiant magnetoresistance in lateral metallic nanostructures for spintronic applications (January 22nd, 2018)
This study discuss the shift observed in spintronics from the current-perpendicular-to-plane geometry towards lateral geometries, illustrating the new opportunities offered by this configuration. The possibility to combine ultrathin magnetic and non-magnetic layers allowed creating hetero-structures whose dimensions are smaller than the characteristic lengths of the spin-dependent transport. This has notably led to the discovery of […]
Read moreLe point sur la Spintronique (November 23rd, 2017)
[In French] Article “Le point sur la Spintronique” dans le magazine de la recherche et de ses applications Les Défis du CEA Octobre 2017 N°221.
Read moreEnhanced annealing stability and perpendicular magnetic anisotropy in perpendicular magnetic tunnel junctions using W layer (November 15th, 2017)
The stiffening of the perpendicular magnetic tunnel junction (pMTJ) stack resulting from the W insertion due to its very high melting temperature, is the key mechanism behind the extremely high thermal robustness. Thicker W layer in the W(t)/Ta 1 nm cap layer makes the storage electrode of pMTJ stack highly robust against annealing up to […]
Read moreA Novel Asynchronous Radiation-Hard Error Correction Structure Based on MRAM (October 19th, 2017)
Radiation robust circuit design for harsh environments like space is a big challenge for IC design and embedded systems. As circuits become more and more complex and CMOS processes get denser and smaller, their immunity towards particle strikes decreases drastically. Spintec proposed a novel integrated circuit structure that enable to increase to increase the robustness […]
Read moreA skyrmion switch (September 28th, 2017)
Nanoscale magnetic skyrmions are good candidates for data manipulation and storage in spintronic applications (logic and/or memory). M. Schott et al. have recently shown that a gate voltage can nucleate or annihilate skyrmions. This proof of concept of a skyrmion switch paves the way towards skyrmion-based applications. Skyrmions are chiral magnetic bubbles: their magnetic texture, […]
Read moreBook – Introduction to Random-Access Memory (September 01st, 2017)
B. Dieny, R. B. Goldfarb, K.-J. Lee (Eds), IEEE Press, Wiley (2017). With chapter authorship from Spintec: L. Buda-Prejbeanu, L. Prejbeanu, B. Diény. DOI: 10.1002/9781119079415 Magnetic random-access memory (MRAM) is poised to replace traditional computer memory based on complementary metal-oxide semiconductors (CMOS). MRAM will surpass all other types of memory devices in terms of nonvolatility, […]
Read moreElectrical detection of magnetic domain walls by inverse and direct spin Hall effect (August 28th, 2017)
Spin orbit torques allow to move efficiently DW in tracks made of ferromagnetic/spin Hall effect bilayer. Domain wall (DW) detection is then of great importance. In this letter, we demonstrate a detection method, based on the ability for a ferromagnetic nanowire, in which a DW is pinned, to inject or detect a pure spin current. […]
Read moreEvidence for spin to charge conversion in GeTe(111), among most read 2016 papers of APL Mater. (August 28th, 2017)
GeTe has been predicted to be the father compound of a new class of multifunctional materials: ferroelectric Rashba semiconductors. In that sense, they are expected to display a coupling between spin-dependent k-splitting and ferroelectricity, thus allowing an electrical control of spin-to-charge conversion phenomena in spintronics. This paper reported the epitaxial growth of Fe/GeTe(111) heterostructures by […]
Read more